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Figure 1. ATLAS enables precise, decoupled control of skeletal and surface attributes. Here, we customize a mesh to reduce shoulder
width and increase body weight. This level of control is difficult to accomplish in prior work [39] due to undesirable correlations between
joints and vertices, e.g. adjusting shoulder width affects the entire body and increasing weight reverses the shoulder adjustment. With
ATLAS’s decoupled skeleton and shape, this customization is a simple two-step deterministic edit.

Abstract
Parametric body models offer expressive 3D representa-
tion of humans across a wide range of poses, shapes, and
facial expressions, typically derived by learning a basis
over registered 3D meshes. However, existing human mesh
modeling approaches struggle to capture detailed varia-
tions across diverse body poses and shapes, largely due
to limited training data diversity and restrictive modeling
assumptions. Moreover, the common paradigm first opti-
mizes the external body surface using a linear basis, then
regresses internal skeletal joints from surface vertices. This
approach introduces problematic dependencies between in-
ternal skeleton and outer soft tissue, limiting direct control
over body height and bone lengths. To address these is-
sues, we present ATLAS, a high-fidelity body model learned
from 600k high-resolution scans captured using 240 syn-
chronized cameras. Unlike previous methods, we explic-
itly decouple the shape and skeleton bases by grounding

our mesh representation in the human skeleton. This de-
coupling enables enhanced shape expressivity, fine-grained
customization of body attributes, and keypoint fitting inde-
pendent of external soft-tissue characteristics. ATLAS out-
performs existing methods by fitting unseen subjects in di-
verse poses more accurately, and quantitative evaluations
show that our non-linear pose correctives more effectively
capture complex poses compared to linear models.

“ATLAS—a structure bearing human form.”

1. Introduction
Recent years have seen significant advancements in human-
centric applications, including 3D digitization of avatars for
virtual reality [32, 51, 56, 58], efficient and performant mo-
tion capture [11, 41, 61, 62], physically plausible human-
object interaction [6, 9, 55], and generative human character
generation [31, 40, 45]. Supporting these methods are para-
metric models of the human body [5, 33, 39, 54, 59, 60] —
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Figure 2. Comparison of Skeleton Symmetries. (Left) The mean
SMPL-X mesh reveals significant skeletal asymmetries (elbows,
spine, and feet) due to joint centers being derived from vertices.
(Right) ATLAS mesh demonstrates a symmetric and consistent
skeleton through decoupling of skeletal and surface parameters.

methods that derive diverse, articulated human meshes from
low-dimensional shape and pose parameters. Expressive
and controllable parametric human models are thus critical
for advancing the broad field of human understanding.

The dominant approaches for parametric modeling of the
human body follow a vertex-centric framework [33, 37–
39, 59] where surface vertices are personalized through a
linear basis, internal skeletal joints are derived from the sur-
face through weighted sum, and the mesh is driven with
linear blend skinning (LBS) [21] and pose dependent cor-
rections. While achieving plausible 3D reconstruction, this
paradigm presents several inherent limitations. First, deriv-
ing internal skeletal joints from surface vertices introduces
incorrect correlations. Shown in Figure 2, the skeletal joints
in SMPL-X [39] are asymmetrical, and the spine shifts left-
to-right with changes in the second shape component which
is associated with soft tissue variation. Second, skeletal at-
tributes can only be modified by altering shape components,
which inevitably affects other surface vertex attributes. For
instance, shoulder width is intertwined with several com-
ponents in SMPL-X [39] that affect soft tissue, inhibiting
precise customization of internal attributes (refer Figure 1).
Third, this correlation causes keypoint fitting to produce
meshes with unwarranted soft-tissue deviations, although
keypoints provide no information about these attributes.

To address these issues, we propose ATLAS, an expres-
sive parametric model of the human body which explicitly
decouples external shape and internal skeleton. Our model
is natively trained at high resolution (115k vertices) and has
an anatomically motivated skeleton with 77 joints. To drive
ATLAS, we start with a template, unposed mesh and cus-
tomize soft-tissue attributes (e.g. torso and leg volume etc.)
with a linear basis over shape. At this stage, the skeletal
joints remain unchanged. We use a skeletal basis to cus-
tomize the internal skeleton, and then we scale and pose the
mesh together with LBS [21]. By explicitly decoupling ex-

ternal shape and internal skeleton, ATLAS eliminates spuri-
ous vertex-joint correlations and enables more precise con-
trollability of the human mesh as shown in Figure 1. Fur-
ther, to improve the realism of the skinned mesh, we intro-
duce sparse, non-linear pose corrective deformations prior
to the LBS phase. The sparsity of this mapping prevents the
pose correctives from fitting to spurious correlations in the
data, such as actuation of one elbow affecting vertices of the
other, and the non-linearity enables more accurate deforma-
tions around difficult joints (shoulders, elbow tips, etc.).

ATLAS is trained on a large-scale dataset of 600k high-
resolution scans of minimally clothed subjects in diverse
poses. Compared to prior work as shown in Table 1, our
model is developed from a more diverse set of shapes, iden-
tities, and poses, resulting in a more expressive human body
model. Additionally, for in-the-wild usage, we develop a
single image model fitting pipeline. Our framework lever-
ages ATLAS’s decoupling of the shape and skeleton, as well
as recent advancements in high-fidelity human-centric mod-
els [24], to first fit the skeleton and pose to keypoints, then
personalize body shape to fit the human silhouette. Support-
ing the fitting is a VAE pose prior [25, 39] trained on 600k
frames as well as a PCA prior over hand poses. Our evalu-
ations show that the resulting pipeline better fits poses and
derives more plausible shape compared to existing methods.
To evaluate our model, we provide quantitative results on
fitting a diverse dataset of body shapes and poses [49] and
demonstrate that ATLAS is more expressive than existing
state-of-the-art parametric body models.
Our contributions are summarized as follows.
• We propose ATLAS, a controllable and expressive para-

metric human body model with separate bases for exter-
nal shape and internal skeleton.

• Our model, with sparse, non-linear pose correctives,
demonstrates more expressivity in representing shaped,
articulated human scans.

• We leverage our model to build a high-fidelity single RGB
image to model parameter pipeline that captures diverse
poses, body shapes, and expressions.

Method Shape IDs Pose IDs Scans Shape Basis Skeletal Basis

SMPL [33] 3.8k 40 1.8k ✓ ✗

SMPL-X [39] 3.8k 40 1.8k ✓ ✗

STAR [38] 13k 40 1.8k ✓ ✗

BLSM [54] 3.8k 10 41k ✓ ✓

GHUM [59] 4.3k 48 60k ✓ ✗

OSSO [22] 2k - 2k ✓ ✓

SUPR [37] 15k - 1.2m† ✓ ✗

BOSS [53] 300 - 300 ✓ ✓

SKEL [23] 3.9k 113 1m† ✓ ✓

ATLAS (Ours) 15k 157 600k ✓ ✓

Table 1. Comparison of training data across state-of-the-
art parametric models. ATLAS leverages diverse registrations
across shape and pose at large scale. †SUPR [37] and SKEL [23]
use 60Hz and 30Hz scans while ATLAS uses 5Hz scans.



Figure 3. Controllable Skeletal Attributes. From left to right, we
visualize the template mesh, decreasing spine length, increasing
shoulder width, and increasing scale of both hands.

2. Related Work

3D Human Mesh Modeling. The early work SCAPE [4]
separately models pose and shape changes with triangle de-
formations. Follow-up works refine or constrain the defor-
mations, improve registrations, or apply it to soft-tissue dy-
namics [10, 13, 16, 18, 43]. SMPL [33] proposes a vertex-
based model [3] with shape and pose corrective blendshapes
and uses LBS to pose the mesh around joints regressed from
vertices. STAR [38] compacts SMPL by using quaternions
and sparsifies the corrective matrix. Frank [19] adds the
FaceWarehouse [8] face model and an artist-designed hand
model to the SMPL rig. SMPL-H [48] adds MANO, a
hand model learned from scans, and SMPL-X [39] merges
MANO, FLAME, and SMPL to learn a shape space for the
entire body. SUPR [37] improves on SMPL-X with using
a federated dataset of body parts and a better foot model.
GHUM [59] proposes a non-linear shape space and pose
correctives. Following the SMPL framework of regressing
joints from surface vertices, these works introduce subopti-
mal correlations between external shape and internal skele-
ton. In contrast, ATLAS explicitly learns a separate skele-
ton space for better controllability and shape expressivity.

Skeleton Models. Many works in biomechanics define
precise, anatomically accurate skeleton models. Some
works [36, 44, 52] derive musculoskeletal models for mod-
eling anatomically plausible movement. Other methods
[12, 15, 20, 50, 64] optimize for underlying fat, muscle, and
bone that drive surface deformations. While anatomically
constrained, these methods rely on specialized simulators
[28] or use models for bone or fat growth, making their us-
age in commercial graphics packages difficult. OSSO [22]
and BOSS [53] derive the anatomical skeleton from SMPL
meshes from medical segmentation masks, but driving them
to new poses requires additional optimization.

Most related to our work are methods that introduce de-
coupled skeleton-driven human mesh models for graphics
and commercial applications. An early work [17] optimizes
internal bones for both pose changes and shape variation.

In contrast, we maintain a separate space over vertices to
represent shape, better modeling soft tissue deformations.
BLSM [54] proposes a decoupled shape and bone-length
space. While promising, the model is not open and lacks
pose corrective deformations which limits realism. SKEL
[23] places bony and soft markers on AMASS [34] using
OSSO [22] and uses AddBiomechanics [57] to optimize for
an internal skeleton. SKEL then learns a mapping from ver-
tices joints and re-rigs the SMPL mesh. While effective
in deriving biomechanical skeletons from SMPL meshes,
SKEL inherits SMPL’s surface vertex-based shape space to
synthesize new human meshes. Skin generation for a spec-
ified skeleton requires optimization to find matching SMPL
shape parameters, and it requires that the desired skeleton is
represented in the SMPL shape space. Further, SKEL lacks
finger control and inherits a limited set of pose correctives
from SMPL. In contrast, our ATLAS enables direct control-
lability of decoupled shape and scale parameters, includes
finger actuation, and provides expressive pose correctives.
Pose Corrective Deformations. To model pose-dependent
deformations, Lewis [29] applies vertex offsets around
joints to alleviate “collapsing joint” defects. Other works
[2, 27, 46] interpolate between saved deformations for key
poses and EigenSkin [26] adds a PCA space for each joint.
SMPL [33] learns a mapping from joint rotations to ver-
tex deformations, and STAR [38] sparsifies this mapping
through geodesic initialization and regularization. GHUM
[59] improves the expressiveness of this mapping through a
non-linear network. However, by mapping the full body
pose to a compressed 32-dim intermediate latent vector,
GHUM’s pose correctives remain dense. Our ATLAS seeks
to achieve the best of both worlds through a sparse and non-
linear mapping, avoiding spurious correlations while main-
taining the expressiveness of non-linear correctives.

3. Method
In this section, we present the ATLAS model, detail its con-
trollable skeletal attributes, describe our sparse non-linear
pose-correctives, and present a single-image fitting method.

3.1. Decoupled Skeletal and Shape Body Model
Overview. The core strength of ATLAS lies in its explicit
separation of the external surface from the internal skeleton.
This characteristic enables precise, independent customiza-
tion of surface and skeletal attributes. To support this ca-
pability, ATLAS derives a shaped and posed human mesh
in two steps. First, surface vertices are customized while
aligned to a fixed template skeleton. Second, this mesh is
simultaneously scaled and posed using LBS [21], modify-
ing the underlying skeleton using 76 individually control-
lable skeletal attributes that each control bone lengths and
body part sizes (Section 3.2). The resulting mesh accurately
captures subtle variations of the human shape.



Figure 4. Sparse Pose Correctives. The first row displays pose
correctives from SMPL-X. The second row shows the inverse
geodesic initialization for our pose corrective activations, and the
third row demonstrates their sparsity after convergence.

Surface Customization. To shape and pose an ATLAS
mesh, we first obtain customized surface vertices X̃ aligned
to the template skeleton in the default A-pose:

X̃(βs, βf , θ) = X̄ + Bs(βs,S) + Bf (βf ,F) + Bp(θ,P)
(1)

where X̄ ∈ R3V is the template A-pose shape, Bs(βs,S) =∑|βs|
n=1 β

s
nSn is the surface vertices’ blend shape func-

tion, and Bf (βf ,F) =
∑|βf |

n=1 β
f
nFn is the facial expres-

sions blend shape function. To correct artifacts caused by
LBS [21], we add pose deformations Bp(θ,P). Unlike prior
works [33, 39] that derive joint centers from this customized
identity shape, our mesh at this stage remains unposed, un-
scaled, and aligned to a fixed internal skeleton.
Skeleton Customization. Next, X̃ is both posed and scaled
through LBS [21]. During this, the skeleton is customized
using Nk = 76 controllable attributes: 15 modify body part
sizes and 61 adjust bone lengths (Sec. 3.2 and Fig. 3).
We denote these as ℓ = σ ⊕ t where ℓ ∈ RNk consists
of scale σ ∈ R15 and t ∈ R61 bone length modifications.
While these attributes can be set individually, we also learn
a blend shape function over them Bk(βk) =

∑|βk|
n=1 β

k
nKn

with Kn ∈ RNk to capture common variations.
ATLAS is driven by Euler 3DoF poses θ ∈ R3(J+1) and

skin weights ω ∈ RV×I , where each vertex is affected by
up to I = 8 joints. Altogether, the surface vertices X̃ are
then driven by the modified skeleton and the pose using the
LBS function M :

X(β, θ) = M(X̃(βs, βf , θ),Bk(βk), θ, ω) (2)

We emphasize that in ATLAS, the joint locations used for
posing are independent of the vertex components βs, which
are only used for specifying the A-pose shape X̃ . Rather,
only the skeletal components βk and the pose θ specify the
joint locations, enabling precise decoupling of the surface
and the skeleton. We refer to Section C of the supplement
for a detailed mathematical formulation of M .

3.2. Controllable Skeletal Attributes
ATLAS incorporates Nk = 76 skeletal attributes, includ-
ing 15 scale modifications that directly alter the overall size
of body parts (body size, head, hands, feet, and individ-
ual fingers) and 61 bone length parameters that adjust joint
translations relative to their kinematic parents. These bone
length attributes encompass major body bones including
spine, neck, upper and lower arms, upper and lower legs,
and fingers. Figure 3 demonstrates some examples of in-
dividual scale attribute control, and visualizations of their
effects are in Figure 12 of the supplementary.

3.3. Sparse, Non-Linear Pose Correctives
Overview. Pose-dependent deformations before LBS [21]
are crucial for realistic meshes. Prior work highlight the
benefits of both sparse-linear correctives [37, 38] – which
restrict joint influences to local vertices to avoid spurious
correlations – and dense non-linear correctives [59], where
each joint non-linearly contributes to all vertices. We recon-
cile these methods by introducing sparse non-linear correc-
tives that leverage the locality of sparse-linear approaches
while preserving the expressivity of non-linear correctives.
Pose Correctives Formulation. Our correctives function
Bp(θ,P) ∈ R6J → R3V takes joint angles in 6D [63] and
outputs vertex offsets. We decompose Bp into a local, non-
linear operation and a sparse, geodesic-initialized linear op-
eration. The former encodes local joint groups together, ef-
fectively enabling non-linear expressivity, while the latter
constrains the extent of vertices each joint group can affect,
avoiding spurious joint-vertex correlations.

First, the local, non-linear operation processes pose an-
gles of joint j and those of its immediate immediate kine-
matic neighbors n(j) using a lightweight MLP:

Non-Linearj(θ) = MLP
(
{R6d(θa)−R6d(⃗0) | a ∈ n(j)}

)
,

(3)
yielding a c-dimensional feature that encodes their poses.

This local feature is then transformed into pose correc-
tive vertex offsets around j using a learned mapping:

Bp
j = ϕ(Aj)⊙ (Pj × Non-Linearj(θ)) (4)

Here, Pj ∈ R3V×c is the pose corrective weight matrix,
and the multiplication Pj × Non-Linearj(θ) produces the
raw pose-dependent vertex offsets. Following STAR [38],
the function ϕ is a ReLU applied to the joint mask Aj ∈ RV



to enforce vertex sparsity per joint. For vertex i, we initial-
ize the i-th element of Aj as (1 − d(i, j))1i∈seg(j), where
d(i, j) is the normalized geodesic distance from vertex i to
the vertex ring around j, and 1i∈seg(j) indicates if vertex
i belongs to joint j’s corresponding or adjacent body part.
This initialization, coupled with L1 regularization on ϕ(A),
encourages sparsity in activation. Figure 4 shows the activa-
tion mask pre- and post-training, showing pose correctives
concentrated around the actuated joint. Altogether, our pose
correctives integrate the expressivity of non-linear functions
with the sparsity of regularized linear correctives.

3.4. Single-Image Mesh Fitting Application
We demonstrate the applicability of ATLAS to real-world
images by developing a single-image mesh fitting pipeline.
Objective. Our framework improves upon previous ap-
proaches [7, 39] by explicitly decoupling skeleton and
shape fitting while leveraging predictions from high-fidelity
human-centric models [24]. We optimize shape, skeleton,
and pose parameters using the objective [7, 39]:

E(βs, βf , βk, θ) = Edata+Eθbody+Eθhand+Eβs+Eβf +Eβk

(5)
Edata comprises of three components: Ekps2d +

Edepth + Emask. Ekps2d minimizes the distance between
projected 3D ATLAS keypoints and 2D detector keypoints
using a robust loss [14]. Edepth minimizes differences be-
tween rendered mesh depth and Sapiens [24] relative depth
predictions. Emask uses efficient Edge Gradients [42] to
minimize differences between rendered and predicted fore-
ground masks. For pose regularization, we train a VAE prior
on full-body poses (excluding hands) and optimize in the la-
tent space with L2 prior Eθbody . Hand poses are optimized
in PCA 6D [63] space with L2 prior Eθhand

. Similarly, we
apply L2 regularization to shape, expression, and skeleton
attribute latents via Eβs , Eβf , and Eβk .

Optimization. We use multi-stage optimization, first fit-
ting major body keypoints followed by hands and expres-
sions. We explicitly decouple skeleton and shape parameter
optimization: skeleton latents βk are optimized using only
pose and skeletal structure of the subject, Ekps2d +Edepth,
while surface shape latents βs are optimized using the mask
term Emask. This separation enables clean optimization of
pose and body structure through keypoint and depth terms,
while accurately capturing soft tissue variations through
mask fitting. Unlike prior work [39] that entangles skeleton
and shape, our approach prevents keypoint-induced soft tis-
sue hallucinations while fitting subject silhouettes through
shape variation. For facial expression fitting, we introduce
an improved approach that first aligns projected 3D expres-
sion keypoints with target 2D keypoints using optimal rota-
tion and translation, then minimizes their difference using a
robust loss term. This enables realistic expression capture
even with head misalignment.

4. Experiments
In this section, we first describe ATLAS training, followed
by an extensive comparison with state-of-the-art body mod-
els across multiple scenarios. Lastly, we provide insights
into the importance of pose correctives in ATLAS and
demonstrate its fitting to in-the-wild images.

4.1. Training ATLAS
Goliath Dataset. We collect a dataset of 600K high-
resolution scans from 130 subjects in dynamic poses,
named Goliath for its scale. These scans are captured with
a calibrated and synchronized multi-view camera system
with 240 cameras at 4K resolution. Figure 7 shows im-
ages of participating subjects in our capture setup. Notably,
this dataset is substantially larger than existing datasets; e.g.
SMPL [33] consists of 1.2K scans from 27 subjects. Our
dataset’s scale enables learning a more generalizable hu-
man body model. Additionally, following [39], we also use
existing datasets to train ATLAS, including CAESAR [47]
and SizeUSA [1] processed by Meshcapade, consisting of
4391 and 10123 scans respectively. This dataset captures di-
verse body shapes, represent a broader section of the popu-
lation (aged 18 to 65+), and complement our captured data.

Body Model. We design ATLAS to support multiple mesh
resolutions. At the highest resolution, the ATLAS mesh
consists of 115,834 vertices, approximately 16 times more
than the 6,890 vertices in an SMPL [33] mesh. Our low-
est resolution defaults to the SMPL resolution. We train
128 and 16 components for the surface vertex space and the
skeletal space, respectively and our pose-corrective features
are 24 dimensional. Additionally, we extract a hand pose
PCA space, and re-target expressions from FLAME [30].

Figure 5. Quantitative Evaluation on 3DBodyTex. We report
vertex-to-vertex error (mm) with different numbers of fitting com-
ponents. For ATLAS, we report the combination of the number of
shape and scale components used.
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Figure 6. Qualitative Results on 3DBodyTex. We visualize each model fit with 16 components, as well as a heatmap indicating vertex-to-
vertex error. Overall ATLAS exhibits tighter fits and has fewer blending artifacts at the elbows, knees, and shoulders compared to baselines.

Implementation Details. We decouple the surface and the
skeleton in our data by first optimizing registrations with
only skeletal parameters and poses. Using triangulated key-
points to regularize joints, these skeletal-only fits capture
variations in height, arm length, finger size, etc. Then, we
optimize surface shape to model soft tissue attributes like
body weight and arm width. We then train ATLAS to cap-
ture these skeletal and surface spaces with autoencoders.
Please refer to Section E of the supplement for more details.

4.2. Comparison with existing Body Models
We compare ATLAS with state-of-the-art body models,
including SMPL [33], STAR [38], SMPL-X [39] and
SUPR [37] on two datasets: 3DBodyTex [49] and Goliath-
Test, a held-out test set of our captured dataset. In contrast
to these baselines, only our proposed ATLAS body model
decouples the skeletal and shape spaces.

3DBodyTex [49]. The dataset consists of 100 male and 100

SMPL-X ATLAS (Ours) Target

Figure 7. Qualitative Results on the Goliath-Test set. From the
left, we compare SMPL-X’s fits, ATLAS’s fits, and registrations.
ATLAS is noticeably better at capturing areas around joints, re-
sulting in sharper knees and elbows.

female scans. For evaluation, we register each body model
to the ground-truth 3D scans using the SMPL [33] topology
to ensure a fair comparison. Due to missing or noisy data
in the ground-truth face and hand regions, we mask these
areas during evaluation.

Linear PCB Non-Linear PCB Target

Figure 8. Qualitative comparison of linear and non-linear pose
correctives (PCB) on the SMPL pose dataset. For each of linear
and non-linear PCBs, we visualize the predicted vertex offsets in
the rest pose, the posed mesh, and the fitting error heatmap.
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Figure 9. Precise, decoupled control of skeletal and surface attributes. Starting with a detailed ATLAS mesh of a subject, we sequen-
tially increase shoulder width, change arm length, and adjust body weight. The resulting mesh is highly realistic, and it maintains details
of the original subject shape and skeleton while naturally incorporating the added customizations.

Figure 5 shows the vertex error of all body models
with respect to the number of fitting components. ATLAS
achieves lower fitting error with fewer components due to
its explicit decoupling of skeletal and shape spaces. For
instance, at 32 components, ATLAS achieves 21.6% lower
vertex-to-vertex error compared to SMPL-X. This validates
ATLAS’s ability to generalize to unseen identities. Fig-
ure 6 shows a qualitative comparison of ATLAS with exist-
ing baselines on the 3DBodyTex dataset. We observe that
ATLAS especially performs well at the tip of the actuated
joints (elbows and knees) and fits the shoulders of the target
scan more closely compared to SMPL-X [39].

Goliath-Test. We evaluate on 100 unseen 3D scans in
unique poses from 10 held-out subjects. Our evaluation pro-
tocol remains similar to 3DBodyTex but include the face
and hands. The qualitative results are shown in Figure 7.
In addition to having sharper joints, ATLAS better captures
subtle deformations of the clenched hand and angled chin,
and it achieves a lower fitting error of 2.34 mm compared
to SMPL-X’s 2.78 mm.

4.3. Discussion
Controllability. Compared to prior work, ATLAS’s separa-
tion of surface and skeleton allows for precise control over
the human mesh. In Figure 9, we demonstrate customiza-
tion of the ATLAS mesh of a subject. We easily control
shoulder width and arm length by adjusting a single skeletal
attribute each, then adjust body weight by updating the first

Method # Vertices Runtime (ms)

SMPL-X 10475 3.74
ATLAS (SMPL topology) 6890 2.39
ATLAS (SMPL-X topology) 10475 2.47
ATLAS (High-resolution) 115834 5.37

Table 2. Runtime comparison of mesh skinning on an A100 GPU.

surface component. Changes in skeletal attributes precisely
maintain the original surface details, and changes in surface
attributes keep the internal skeleton constant. The resulting
mesh is realistic and can readily be driven by the subject’s
own motion or by pose sequences from other sources. We
encourage readers to refer to the supplemental video.

Linear vs Non-Linear Pose Correctives. Unlike existing
methods, ATLAS uses non-linear pose correctives, which
introduces more parameters but provides higher capacity
to model pose-correlated vertex corrections. To evaluate,
we compare ATLAS against a version with linear pose cor-
rectives on the SMPL [33] dataset, isolating the influence
of pose-corrective blendshapes by fitting a single rest-pose
mesh and internal skeleton across the entire sequence. A
qualitative comparison is shown in Figure 8. The non-
linear correctives achieve more realistic fitting, particularly
around complex joints such as the shoulders, and better cap-
ture muscle bulging in extreme poses. Quantitatively, the
fitting error decreases from 1.82 mm to 1.61 mm, with im-
provements concentrated around joint locations.

Computational Analysis. We compare the cost of gener-
ating a 3D mesh from the body model parameters in Ta-
ble 2. ATLAS achieves significantly faster inference times
than SMPL-X [39] for the same number of vertices, leverag-
ing its optimized CUDA-based implementation. Moreover,
our model supports higher resolutions (10× more vertices)
with minimal latency increase.

Method Vertex Error (mm) Joint Error (mm)

SMPLify-X 87.7 73.2
ATLAS (Ours) 55.4 53.7

no rel. depth 60.7 54.5
no rel. depth, no mask 61.8 55.7

Table 3. Evaluating mesh prediction from a single image. Our
model better predicts the 3D human mesh from a single image,
and each data term improves fitting.



Figure 10. Qualitative results of fitting ATLAS to in-the-wild images. Our multi-stage body fitting procedure robustly handles clothed
subjects in varying poses along with detailed facial expressions.

Image SMPLify-X ATLAS (No Mask) ATLAS (Ours)

Figure 11. 3D pose, shape, and skeleton estimation from a sin-
gle image. Our fitting pipeline captures pose more accurately, and
edge gradient optimization of shape captures soft tissue attributes.

4.4. Monocular Mesh Fitting
We evaluate our proposed single image mesh fitting ap-
proach (Sec. 3.4) on 200 scans from 10 unseen subjects in
the Goliath-Test dataset. Table 3 reports mean vertex-to-
vertex error (mm) and 3D joint error (mm) after Procrustes
alignment. ATLAS achieves better vertex and joint fits com-
pared to SMPLify-X [39], with further improvements from
relative depth and mask optimization. Figure 11 shows that,
unlike SMPLify-X, ATLAS fits pose and skeleton to key-
points without spuriously altering body shape. With edge
gradient optimization, the body shape better aligns with
subjects, particularly in the torso and legs. Our decoupled
skeleton and shape body model, combined with decoupled
keypoint and mask fitting, enables accurate pixel-aligned
fitting across diverse images, as in Figure 10.

5. Conclusion
We propose ATLAS, an expressive body model that explic-
itly decouples surface shape from internal skeleton. Our
body model enables direct controllability of the internal
skeleton, avoids spurious and incorrect correlations be-
tween surface vertices and internal joint centers, and en-
ables decoupled skeleton and shape fitting. We additionally
propose a sparse and non-linear pose corrective function
that demonstrates improved generalizability for 3D human
mesh modeling. Additionally, we also present a keypoint
fitting framework that achieves accurate, pixel-aligned fits
using ATLAS on monocular images. ATLAS represents a
step toward addressing limiting assumptions in body mod-
eling, advancing the field toward realistic, accurate, and
anatomically consistent 3D human mesh modeling.
Limitations. While ATLAS captures diverse body shapes,
our 15,000 subjects do not span the full range of human
variation. High-resolution human scan collection and
processing remains time-consuming and costly, creating a
bottleneck for scaling human modeling. However, ATLAS
provides an accurate prior for human scan registration, en-
abling development of next-generation parametric models.
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A. Supplementary Overview
In the supplementary video, we present video results of fit-
ting ATLAS to high-fidelity 3D scans, demonstrate control-
lability of skeletal attributes for a dynamnic sequence, and
show results of fitting ATLAS to RGB videos in the wild.

In this supplementary document, we provide additional
details on skeletal attributes, visualizations of the training
data, implementation details, and qualitative results of AT-
LAS. The sections are organized as follows:
• Section B provides additional details regarding the 76 in-

dividually controllable skeletal attributes of ATLAS.
• Section C outlines the specific formulation of the Linear

Blend Skinning (LBS) function.
• Section D visualizes some sample registrations from our

Goliath dataset.
• Section E contains additional details regarding the train-

ing of ATLAS and the pose prior.
• Section F shows the skin weights before and after train-

ing.
• Section G includes visualizations of the first few external

shape & internal skeleton latent components.
• Section H demonstrates the full expressiveness of ATLAS

by visualizing generated subjects through random sam-
pling of external shape, internal skeleton, body poses,
hand poses, and facial expressions.

• Section I provides additional results on our single image
to mesh prediction pipeline on in-the-wild images.

B. Details on Controllable Skeletal Attributes
ATLAS defines 76 controllable skeletal attributes that mod-
ify different parts of the skeleton. As described in the main
paper, 15 of these attributes directly scale a local joint space
(and those of its kinematic children). These consist of scales
that affect the full-body, head, hands, feet, and individual
fingers. The remaining 61 are bone length parameters that
directly adjust each joint’s center location with respect to
its kinematic parent. These include the spine, neck offset,
neck length, shoulder width, upper arms, lower arms, hip
location, upper legs, lower legs, and each bone in the fin-
ger for precise controllability. We visualize the skeletal at-
tributes that affect major parts (excluding individual finger
bone adjustments) in Figure 12.

Further, we demonstrate that the surface shape basis and
the skeletal basis are both necessary and are complementary

Shape Skeleton 3DBodyTex Goliath-Test

✓ ✗ 6.47 4.76
✗ ✓ 3.17 2.67
✓ ✓ 2.48 2.34

Table 4. Mesh fitting error (mm) with shape and skeleton params.

by evaluating mesh fitting with disentangled parameters in
Table 4. Shape alone misses height and limb length vari-
ations, while skeleton alone overlooks soft tissue. Using
both, like ATLAS, best captures diverse body shapes.

C. Linear Blend Skinning Formulation
In this section, we provide the precise formulation for the
LBS skinning function M used in Section 3.1 of the main
paper. This transformation M to yield a scaled and posed
vertex xi is written as:

xi =

I∑
j=1

ωijTj(θ̄, t̄, θ, σ, t)Tj(θ̄, t̄, 0⃗, 0⃗, 0⃗)−1x̃i (6)

where θ̄ and t̄ define the rest pose of the skeleton. These rest
pose definitions of each joint’s rotation and offset with re-
spect to its parent are necessary because unlike SMPL [33]
where each joint’s coordinate system is root axis-aligned,
our rotations are skeleton-aligned. The forward kinematic
transformation Tj is then defined by:

Tj(θ̄, t̄, θ, σ, t) = Πa∈K(j)

[
2σ(a)R(θa)R(θ̄a) t(a)te(a) + t̄l

0 1

]
(7)

where K(j) are the kinematic tree parents of joint a in
ascending order, σ(a), t(a), and te(a) are zero if joint
a lacks a corresponding skeleton modification. Thus,
Tj(θ̄, t̄, 0⃗, 0⃗, 0⃗)−1 transforms from global to joint-j’s local
coordinates through kinematic tree traversal of an unposed,
unscaled skeleton, while Tj(θ̄, t̄, θ, σ, t) transforms from
joint-j’s local to global coordinates with skeleton posing
and bone scale/length modifications.

D. Visualization of scans from the Goliath
dataset

In Figure 14 we provide a sample of our Goliath dataset
To assemble a large and diverse set of of scans to train our
model, we capture 130 subjects in a diverse suite of poses
including conversational settings, charades acting, and dy-
namic movements. The frames are captured using 240 high-
resolution, synchronized cameras that yields meshes with
approximately 1 million vertices. The scans are captured at
30-90 FPS, and we use furthest-point-sampling on pose to
select an interesting and diverse set of 600k frames to train
ATLAS.

E. Training Details
E.1. ATLAS Body Model Details
E.1.1. Vertex Resolutions
While ATLAS is natively trained at the highest resolution
with 115,834 vertices, we define mappings to the 6890 and



(a) Body Scale (b) Spine Length (c) Neck Offset (d) Neck Length

(e) Head Scale (f) Shoulder Width (g) Upper Arm Length (h) Lower Arm Length

(i) Right Hand Scale (j) Left Hand Scale (k) Hip Width (l) Hip Height

(m) Hip Depth (n) Upper Leg Length (o) Lower Leg Length (p) Feet Scale

Figure 12. Visualization of Body Skeletal Attributes. For each skeletal attribute, we show three meshes - increasing the skeletal parame-
ter, the base mesh, and decreasing the parameter. Bones affected by the changed parameter are colored red if they have increased in size,
and blue if they have decreased. Each attribute either directly scales a local joint space, including those of its kinematic children, or adjusts
joint translations relative to its own kinematic parent. For instance, Figure 12i shows an instance of the former, where the entirety of the
right hand changes in size, while Figure 12f is an instance of the latter, where the shoulder joint center is moved, driving an increase or
decrease in shoulder width.

10475 vertices of SMPL and SMPL-X. This enables trans-
formations between ATLAS and SMPL/SMPL-X and al-
lows ATLAS to operate with fewer vertices for improved
efficiency.

E.1.2. Body Model Design

ATLAS leverages a joint structure designed by expert
sculpting artists to ensure anatomical consistency. The
joint locations adhere to the human bone structure, and in
place of a standard single 3DoF rotation for major joints,
ATLAS decomposes them into anatomically accurate sub-
joints. For example, the shoulder includes a scapular joint,



FinalInitial

Figure 13. Skinning weights for the jaw, neck, upper arm, elbow, wrist, lower spine, knee, and ankle before and after optimization.

and the ankle is divided into subtalar and talocrural joints.

E.2. ATLAS Training Details
ATLAS is trained end-to-end by sampling registrations
with their corresponding rest-pose surface vertices, internal
skeletal parameters, and full body pose. The surface ver-
tices and skeletal parameters are input into their respective
linear autoencoders [35], the pose is input into our sparse,
non-linear pose correctives function, and the mesh is rigged
with the reconstructed vertices, reconstructed skeletal pa-
rameters, pose correctives, and trainable skin weights.

We initialize autoencoders [35] using PCA of sur-
face vertices and skeletal parameters from our multi-shape
dataset. For each training iteration, we sample the number
of components n ∈ [1,max] and preserve only the first n
features in the autoencoder latent bottleneck, zeroing out
the remainder. This ordered dropout strategy maintains the
component importance hierarchy throughout optimization.
We use 128 components for the shape and 16 components
for the skeleton, as we found fitting error plateaued beyond
these components.

ATLAS is trained by minimizing the loss:

L = Ldata + Lshape reg + Lskele reg + Lskin lapl + Lpc lapl

+ Lskin init + Lpc act reg

where Ldata is the main data term minimizing vertex-to-
vertex distance between the registration and the predicted
mesh. Lshape reg and Lskele reg are L2 losses that regular-
ize the intermediate latents of the surface vertex and skele-
ton attribute autoencoders. Lskin lapl and Lpc lapl regular-
ize the skin weights and pose corrective blendshapes with
a cotangent laplacian loss. Lskin init regularizes the skin
weights towards their artist-defined initialization through
L2. Lpc act reg imposes an L1 regularization loss on the pose
corrective activation matrix, which is geodesic initialized,
to encourage sparsity in vertex-joint correlations.

E.3. Pose Prior Implementation Details
For our pose prior, we adopt a lightweight VAE architecture
similar to that of SMPL-X [39]. The VAE has a 32 latent di-
mension, takes as input 6D continuous rotation vectors for

the full body excluding hands, and is trained to reconstruct
samples from our 600k multi-pose dataset. The model is
trained for 40 epochs with a batch size of 512 and a learn-
ing rate of 5e-3. We minimize three losses - the KL diver-
gence loss, a reconstruction loss, and the angle difference
loss between the input and output.

F. Optimized Skin Weights
We initialize skin weights Ω with artist-defined values and
optimize them end-to-end during training. The weights be-
fore and after training are shown in Figure 13.

G. Skeleton and Shape Latent Spaces
Our skeletal attribute definitions allow for direct controlla-
bility of individual aspects of the internal skeleton. Further-
more, for lower-dimensional keypoint fitting, scan registra-
tion, and skeleton modification, our skeleton latent space
provides data-driven correlations between different aspects
of the body. We visualize the first four components of the
skeletal components in Figure 15. We find that the skele-
tal attributes themselves capture most of the variation in
the human body, such as overall body size, shoulder width,
arm length, etc. While the skeletal components focus on
the internal structure of humans, the surface components,
shown in Figure 16 instead focus on the external soft tissue
changes. Our surface components are more subtle than the
shape components of prior work, as previous methods en-
tangle skeletal and surface attributes, forcing the same com-
ponents to capture variations in both soft tissue attributes
and internal skeleton.

H. Latent Sampling of Shape, Skeleton, Pose,
and Expressions

In this section, we further demonstrate the expressiveness of
ATLAS by randomly sampling shaped, articulated human
subjects in Figure 17. More specifically, we sample from
our surface and skeletal latent spaces to model a random
identity, then sample from our pose prior and hand PCA
space for full-body pose, and finally sample facial expres-
sions. The resulting meshes are realistic, and they span a



Figure 14. Sampled Visualizations of Our Multi-Pose Dataset. We train ATLAS on a diverse set of 600k scans captured by a high-
resolution scanner with 240 synchronized cameras.



Figure 15. Visualizations of the first four internal skeleton components. For each component, we visualize changes in the mesh from
decreasing and increasing the component. The skeleton is colored such that red indicates an increase in bone length while blue indicates
a decrease. The skeletal components alone are sufficient to capture most human body variation. The first component is correlated with
overall size of the subject, the second captures the neck and the hips, the third focuses on the shoulders and arms (decoupling upper and
lower arm lengths), while the fourth captures length of the full arm.

Figure 16. Visualizations of the first four external surface components. As most of the body variation (height, arm length, hand size,
etc) are already captured by the skeleton, the surface components focus on soft tissue changes such as weight, neck width, arm thickness,
and facial attributes. Note that we do not display the skeleton as it remains unchanged with variations in the surface vertices.

wide range of diverse human subjects in a variety of poses.

I. Additional Results on Mesh Prediction in the
Wild

We extend the results in Figure 11 of the main paper by
providing additional results on in-the-wild images in Figure
18. Our fitting procedure complements ATLAS by yield-
ing shape, scale, pose, and expression parameters from 2D
RGB images in the wild. Of particular note is ATLAS’s
ease at capturing undersized subjects such as children. By
explicitly modeling the size of each skeletal part, ATLAS
naturally predicts realistic shapes for children, accounting
for their relatively larger heads compared to the rest of their
body.



Figure 17. Visualization of Random Latent Samples from ATLAS. We randomly sample subject surface vertices and internal skeleton
from the latent spaces, sample pose from our VAE pose prior and hand PCA space, and facial expressions from the FLAME space. ATLAS
captures a wide breadth of realistic human shapes and articulates them into realistic poses.



Figure 18. Additional Visualizations of Fitting ATLAS to Single Images. Our fitting pipeline can capture a wide range of poses and
shapes in addition to facial expressions.
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